北京大学 研究生培养方案

二级学科名称: 力学(航空航天工程)

招生年度: _______2024

培养类别: 普博

所在院系:_____工学院

北京大学研究生院制表

打印日期: 2024-09-04

一、学习年限和学分要求

学习年限: 4 适用范围:外国

应修总学分(18)

其中专业必修(4)学分,限选(0)学分,论文写作(2)学分

公共必修课学分:一外汉语(2)留学生中概(2)

二、总体要求

1、培养目标

培养攻读"航空航天工程"二级学科博士学位研究生应坚持德、智、体全面发展,毕业后能胜任高等院校、设计与科研院所和生产使用部门的教学、科研、技术开发和管理工作。具体要求他们做到:

- 1、热爱祖国,遵纪守法,诚信公正,有社会责任感。
- 2、掌握 " 航空航天工程 " 二级学科领域坚实宽广的基础理论和系统深入的专门知识;熟练地掌握一门外国语;具有 独立从事学术研究工作的能力;在航空航天领域某个特殊课题方向做出创造性的成果。
- 3、身心健康,具有良好的团队协作精神和高尚的品格。

2、科研能力与创新成果的基本要求

根据《教育部办公厅关于进一步规范和加强研究生培养管理的通知》、《北京大学学位授予工作细则》第四章第十三条规定,制定力学与工程类分会博士研究生学术创新成果综合评价实施细则。 细则内容如下:

- 1. 工学院各二级学科,须成立研究生学术创新成果综合评价审核小组,成员人数不少于5人,审核小组成员的组成 需经过学院主管研究生副院长审核批准。
- 2. 学位申请人需在送审前30日,就研究生阶段的学位论文和学术成果向审核小组提交总结性书面陈述(书面陈述 内容包括但不限于学位论文的完成情况,学术成果以及获得的同行评价),审核小组负责相应学科研究生毕业前的 学术创新成果审核,就研究生是否进入毕业和答辩程序进行无记名投票。获得同意票超过2/3者方可进入毕业和答辩 程序,否则审核小组建议其延长学业或结业或转为硕士培养。
- 3. 学术创新成果呈现形式:

撰写学术论文是博士研究生培养的重要内容,学术发表是创新成果的重要表现形式,学术创新成果呈现形式可以是 学术论文、专利、软件著作权、著作等。

3、学位论文基本要求

博士学位论文应当表明作者具有独立从事科学研究工作的能力,并在科学或专门技术上做出创造性的成果,对所研究的课题在某一方面有创新性。论文选题和研究内容,应对学术发展、经济建设和社会进步有一定的理论意义或现实意义。博士学位论文应在导师指导下由本人独立完成,应按照本学科专业规定的基本要求与书写格式撰写。学位论文应当用规范汉字进行撰写。英文培养项目的留学生,可使用英文撰写,但应有不少于6000字的详细中文摘要。

4、新生能力、水平基本要求

- 1、遵纪守法
- 2、学习目的明确,学风严谨;有较强的事业心和献身精神。
- 3、在本学科或相关学科接受过正规训练,取得硕士学位,具有初步从事科学研究工作的经历和能力。
- 4、身体健康

三、培养过程

1、年度审核基本要求

硕士起点博士生,需要4次年度审核。

第一年:第二学期期末考试后,应对学生的课程学习情况进行评估。

第二年:第三学期后,应对学生进行综合考试。 第三年:第六学期内,学生应完成选题报告。

第四年:第八学期进行学位论文答辩。

2、学科综合考试基本要求

1. 综合考试的考核形式

综合考试采取闭卷笔试与口试相结合的方式,总分100分,其中笔试占40-50 分,口试占50-60 分;笔试原则

上以考察专业必修课相关的基础理论、相关学科知识为主;口试应包括对学生所在研究方向的学科前沿知识、分析 问题和解决问题能力的考察。

2. 综合考试的组织

综合考试委员会主席须为教授(或相当职称的专家),原则上由学科点教学负责人担任,考试委员会由本学科点及 相关学科至少5 位教授或副教授(或相当职称的专家)组成,根据学科情况可邀请1-2 位外单位专家作为成员;综合 考试的秘书应由在职的老师、博士后或高年级博士生担任。

如有综合考试委员会主席指导的博士生参加考试,其综合考试的口试部分应事先指定委员会其他教授负责主持,该 教授作为该生综合考试记录中的委员会成员签字。

学科点至迟于考试前2周将考试委员会组成、考试范围提交主管副院长审核批准,否则考试无效。

考试结束后一周内学科点将笔试试题和考试结果提交学院,主管副院长审核后在学生学籍系统中录入综合考试结果

3. 综合考试的结果

综合考试成绩分为通过与不通过两种。总分低于70 分或笔试低于笔试考卷满分60%的,为综合考试不合格。 综合考试不合格者,经考试委员会同意可申请三个月后补考一次或者依据考试方案参加下一次考试。对补考仍不合 格者,一般予以退学;直博生和硕博连读生,也可有考试委员会提出转为硕士生的建议。详见《研究生手册》中《 北京大学博士研究生分流实施细则》。

4. 综合考试的时间

综合考试应在入学后第三学期结束前完成。

3、学位论文选题报告基本要求

1.开(选)题报告完成时间及组织

要求研究生在广泛调查研究、阅读文献资料、搞清楚主攻方向上的前沿成果和发展动态的基础上,自己提出学位论文开(选)题。开(选)题应尽可能对学术发展、经济建设和社会进步有重要意义。

应在综合考试通过后4个月内,由导师与指导小组(不少于5位导师,副教授及以上职称)组成开(选)题报告指导小组,就开(选)题意义、前人相关成果、材料基础与实验条件、理论与方法等方面做开(选)题报告,尽可能广泛地听取专家意见。导师和指导小组应严格把关。

4、学位论文全面审查(预答辩)基本要求

1. 预答辩的完成时间及组织

学位论文预答辩与评审是博士生学位论文工作的全面审查。预答辩不晚于计划正式答辩前3 个月由导师组织审查小组完成,确定是否有可能如期答辩、论文是否需作大的修改等。

2. 预答辩审查小组成员要求

由导师邀请不少于5位导师(副教授及以上职称),一般由导师本人担任组长,校内导师不得少于校外导师。

四、 本二级学科下研究方向设置

<u> </u>	一级于1711则70719以且	,
序号	研究方向名称	主要研究内容、特色与意义
1	飞行器机构与结构设计与分析	先进飞行器结构设计与分析,多体系统动力学与控制;机器人及空间 机构动力学与控制,人工智能与复杂系统动力学建模;飞行器轨道和 姿态一体化控制和优化等。
2	燃烧学	层流与湍流燃烧,空天动力燃烧过程与动力装置燃烧过程,常规与特殊燃料燃烧特性,极端条件和特殊条件下的燃烧过程,新型燃烧技术,绿色燃料合成与转化,能源利用中的安全问题,燃烧数值模拟与诊断,燃烧学与人工智能、材料科学、空间科学、催化科学、电学等领域的交叉等。
3	飞行器设计	下一代新型飞行器的空气动力学、控制、推进一体化设计问题。研究 内容包括下一代高超飞行器的气动特性预测;混合动力推进和全电推 进的飞行器;复杂系统的面向控制建模;飞行器轨道和姿态一体化控 制和优化等。
4	空气动力学	针对高超声速和民机的空气动力学性能开展研究,具体包括试验系统研制、空气动力学试验技术发展,可压缩和不可压缩湍流流动理论问题和数值模拟,下一代高超飞行器的湍流与边界层转捩理论、边界层和发动机内流湍流模型研究,民机空气动力学计算软件研制,民机气动布局的气动、噪声、排放预测,民机气动布局的优化设计方法、高精度数值模拟以及可压缩湍流的混合和粒子输运、多相流研究,以及旋翼设备的气动与噪声,空间磁流体和等离子体等。
5	推进技术	推进系统中的湍流、燃烧、噪声和控制问题。研究内容包括航空发动机叶轮机械内流,旋转部件湍流、传热和噪声研究,燃烧室燃烧和喷流噪声,发动机涡轮和压气机的气动和传热;航空用分布式推进系统,低空飞行器动力系统、可替代燃料稀薄燃烧,发动机相关的流动稳定性,传统与新型水下推进系统与航行体的流动噪声,面向控制的复杂系统建模等科学问题。

五、前沿讲座与阅读目录

1、前沿讲座基本要求

可以考虑选择王仁力学讲座(一)或王仁力学讲座(二)。

2、重要阅读书目与经典文献

著作或期刊名称	作者	出版单位	出版日期	ISBN号		备注	È	
无	无	无	无	无	无			
本学科负责人(签名	名):							
						年	月	日
所在院(系、所、「	中心)意见:						<i></i>	— —
THE PROPERTY OF THE	1 10 7 10.70 .							
			台書人(加 章	盖院系公章)				
				品がスターク	•			
						年	月	日
学位评定分委会审构	核意见:							
			负责人(签名	当):				
						年	月	日
研究生院审核意见	:							
			院长(签名	3):				
						_	_	
						年	月 ———	日

附件:课程设置(包括专题研讨课)

1、公共必修

序号	课程号	课程名称	课程类别码	必修课类别	学分	总学时	备注
1	01410008	中国概况 Lecture Series on Contemporary China	必修	中国概况	2	32	

	04411002	基础汉语	N 1167				
2		Chinese Language (for international students)	必修	一外汉语	2	64	
3	04411003	基础汉语(初级)	必修	一外汉语	2	64	
3		Elementary Chinese 1	处顺	外人后	۷	04	
4	04411004	基础汉语(中级)	必修	一外汉语	2	64	
4		Elementary Chinese 2	必順	一外汉语	2	64	
5	04411005	基础汉语(高级)	必修	<i>h</i> : \(\tau \)	2	64	
)		Elementary Chinese 3	少修	一外汉语	2	64	

2、论文写作

序号	课程号	课程名称	课程类别码	必修课类别	学分	总学时	备注
1	08611490	英文科技论文写作	必修	论文写作	2	36	
'		How to Write a Research Paper	少順	化义与肝		30	

3、专业课

序号	课程号	课程名称	课程类别码	必修课类别	学分	总学时	备注
1		实验室安全学	必修	专业必修	1	18	
ı		Safety Knowledge of Laboratory	必順			10	
		航空航天热流体与燃烧模拟		专业必修		54	
2		Thermofluid and Combustion Simulation for Aeronautics and Astronautics	必修		3		
	08611320	传感器技术基础	\#_ <i>\</i>				
3		Principles of Sensor Technology	选修		3	48	
4	08611610	王仁力学讲座(一)	选修		1	16	
4		Wang Ren Seminars (I)	足鸣		'	10	
5		王仁力学讲座(二)	选修		1	16	
5		Wang Ren Mechanics Lecture			l	10	
_	08611820	高等计算流体力学	选修				
6		Advanced Computational Fluid Dynamics			3	53	
7	08612330	固体本构模型与多尺度方法	选修			00	
/		Constitutive Model of Solids and Multiscale Method			2	32	
	08613400	结构智能设计与制造	\# <i>\\</i> #-			4.0	
8		Intelligent Design and Manufacturing of Structures	选修		3	48	
9	08613810	气动声学基础	选修		3	48	
9		Fundamentals of aeroacoustics	足鸣		3	40	
	108617100	建模与仿真	\# \#				
10	33017100	Simulation Modeling and Analysis	选修		3	48	