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Abstract

Similar to pure fluids, physical properties of a binary fluid mixture also exhibit singularities close

to its critical point, especially when it is dilute. The numerical and theoretical results presented

in this paper identify that the piston effect, a rapid energy transfer phenomenon, can be induced

by boundary mass transfer in a confined near-critical binary fluid mixture. Due to the Dufour

effect, both the concentration and temperature variations are responsible for the strong expansion

of the boundary layer, which provokes an acoustic wave propagating in the fluid, leading to a

gradual increase of the temperature, pressure and density. The detailed analysis implies that such

a mixed piston effect can be approximated as a direct superposition of their respective effects in

the perspective of energy transformation.
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1. Introduction

For a single-component fluid near the liquid-vapor critical point, the large compressibility and

the diminishing thermal diffusivity are responsible for a rapid thermal relaxation process known as

the piston effect (PE) [1, 2, 3]. Due to buoyant convection on earth, the PE had long been ignored

and was first observed in a microgravity experiment [4]. Indeed, the heating of a confined near-

critical fluid provokes a thin thermal boundary layer (BL), which expands strongly, acting like a
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piston, and drives a field of acoustic waves in the fluid. These acoustic waves travel back and

forth at the speed of sound, causing adiabatic compression of the bulk fluid and rapid relaxations

of temperature [5]. Asymptotic expansions were employed to study the relaxations of temperature

and density fields [6, 7]. Meanwhile, several experimental studies were carried out to evidence

the PE [8, 9, 10, 11], observe thermoacoustic waves [12], and investigate whether the PE can be

used to perform long-distance heat transfer [13]. The generation and reflection of thermoacoustic

waves were discussed thoroughly by Shen and Zhang [14, 15]. A recent study by Long et al. [16]

discussed the thermoacoustic waves in binary fluid mixtures, with an emphasis on the influence of

cross-diffusion effects. Related research progresses are widely described in a recent book written

by Zappoli et al. [17].

Generally speaking, most of previous studies focus on heat transfer and related effects in criti-

cal region. However, mass transfer, always being bracketed with heat transfer, in a critical region

has not received sufficient attention. In fact, one of the most important engineering applications

of near-critical and supercritical fluids is chemical extraction, in which the mass transfer is of

fundamental significance. Previous studies have revealed that large density gradient and natural

convection are often encountered when a solute dissolves into a near-critical fluid [18, 19]. These

facts motivated us to investigate whether there is any hidden phenomenon, among which our pri-

mary concern is the PE.

Similar to pure fluids, the physical properties of a near-critical binary fluid mixture (NCBFM)

exhibit singular behavior near the critical points. The theory developed by Griffiths and Wheeler

[20] offers a concise qualitative description for the abnormal behavior of thermodynamic proper-

ties. Variables such as pressure p, temperature T and chemical potential µ are called field vari-

ables. Other variables such as density ρ, specific entropy s and concentration c are called density

variables. A derivative of a density variable with respect to a field variable divergences strongly,

with two field variables kept constant, and weakly, with one density and one field variables kept

constant. The derivative of a density variable with respect to a density variable, with only field

variables kept constant, is generally finite and well-behaved at a critical point. Therefore, the

specific heat ratio cp = T (∂s/∂T )p,c, the isothermal compressibility αT = 1/ρ × (∂ρ/∂p)T,c, and

the thermal expansion coefficient βp = −1/ρ × (∂ρ/∂T )p,c are weakly divergent in the asymptotic
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critical region, and the solutal expansion coefficient κc = −1/ρ × (∂ρ/∂c)p,T remains finite at the

critical point. However, Sengers [19] pointed out that exceptions occur in dilute binary mixtures,

because they are in between of pure fluids and mixtures. The divergences of cp, αT and βp exhibit a

crossover, changing from strong divergences to weak divergences as a critical point is approached.

Besides, under the infinite-dilution condition, the partial molar volume of the solute diverges at

the solvent’s critical point which implies that κc is also large in a near-critical dilute mixture [18].

As for transport properties, according to Luettmer-Strathmann [21] and Yang et al. [22], the dif-

fusion coefficient D vanishes at a critical point, the viscosity η diverges weakly, and the thermal

conductivity λ remains finite.

In this paper, we report interesting findings on the PE induced by mass transfer. We study the

responses of a dilute NCBFM to boundary concentration perturbations by numerical and theoret-

ical modeling. The hydrodynamic model, along with its solutions under different concentration

perturbations on acoustic time scale are presented. Moreover, a thermodynamic theory is proposed

to explain the phenomenon.

2. Physical and mathematical modeling

2.1. Physical model and governing equations

Dilute mixture

A + B

x = 0 x = L = 10 mm

Mass flux
Adiabatic

Impermeable

Figure 1: One-dimensional physical model.

We consider a dilute NCBFM of species A (the minority species) and B confined between two

infinite solid plates that are spaced by a distance L = 10 mm (Fig. 1). The one-dimensional model

is justified since gravity is ignored (no buoyant convection and density stratification). The fluid is

initially motionless at the critical density ρc and at thermodynamic equilibrium slightly larger than

its critical temperature Tc (subscript c denotes the critical value). A mass flux of species A happens

at the left boundary, while the other side is adiabatic and impermeable. The boundary condition

employed in this study is often encountered in chemical extraction processes, where species A as
3



the solute dissolves into near-critical/supercritical solvent B from solid substrate. The resulting

mixtures are often dilute since the solubilities are usually small.

The Soret effect (SE) and Dufour effect (DE) should be included, since the thermal diffusion

factor kT , describing the SE and DE, diverges for a NCBFM [21]. The energy flux q and mass flux

i are thus expressed as [23] (along the x direction)

q =
kT

cs
i + Hi − λTx, (1)

i = −ρDcx −
ρkT D

T
Tx, (2)

where c is the concentration (mass fraction) of species A. The subscript x represents derivative

versus space. The quantity H is related to the partial molar enthalpy of the two species HA and

HB by H = HA/MA − HB/MB, where M is the molar mass. The quantity cs = (∂c/∂µ)p,T is the

concentration susceptibility (µ is related to the chemical potentials of the two species µA and µB by

µ = µA/MA−µB/MB). The first and second terms on the right-hand side (RHS) of Eq. (1) are energy

flux due to DE and interdiffusion of species, respectively. The second term on the RHS of Eq. (2)

is mass flux due to SE. Employing the above expressions for q and i, the conservation equations

[24] with constant physical properties, together with a linearized equation of state (EOS), are

ρt + (ρu)x = 0, (3)

(ρu)t + (ρu2)x = −px +
4η
3

uxx, (4)

(ρc)t + (ρuc)x = −ix, (5)

cp
[
(ρT )t + (ρuT )x

]
= λTxx + Tβp(pt + upx) −

kT

cs
ix +

4η
3

u2
x, (6)

δρ/ρ = αTδp − βpδT − κcδc, (7)

where u is the velocity. The subscript t represents derivative versus time. Note that in order to get

concise equations, the energy flux q has been fully substituted, while the mass flux i remains.

2.2. Modeling of physical properties

The Peng-Robinson (PR) EOS together with the van der Waals mixing rule is used to obtain the

thermodynamic properties of the NCBFM. In this study, we only consider the case with kT , κc > 0.
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The mixture of C2H6 (species A) and CO2 (species B) with c = 0.005 is chosen as a reference

system because the reliable modeling by PR EOS and experimental data on critical parameters

can be found in literature [25]. The reader is referred to our previous work [26] and a detailed

instruction [27] for calculations of cp,α, β and κ based on the framework of the PR EOS and van

der Waals mixing rule. The chemical potentials of components are calculated by

µA = µ̄A + RT ln
fA

f̄A
, µB = µ̄B + RT ln

fB

f̄B
, (8)

where f is the fugacity, R = 8.314 J mol−1K−1 is the universal gas constant and the overbar indicats

a property at reference state (T̄ = T , p̄ = 100 kPa). fA and fB are calculated directly from PR EOS

and van der Waals mixing rule [28]. The reference properties are accessed from the NIST database

[29].

For transport properties, we suppose that η and λ of the mixture are those of pure CO2 at the

same temperature and density (obtained from the NIST database [29]), which is a valid assumption

for a dilute mixture (c < 0.01). As for D and kT , since very few experimental data is available,

theoretical models should be employed. The diffusion coefficient can be expressed as [30]

D = Ds + Db =
kBT
6πηξ

+
αb

ρ

(
∂c
∂µ

)−1

p,T
, (9)

where kB is the Boltzmann’s constant, ξ is the correlation length, αb is the background part of the

Onsager kinetic coefficient α. The diffusion coefficient D in Eq. (9) consists of a singular part Ds

and a background part Db. Asymptotically close to the critical point, both Ds and Db tend to zero

due to the strong divergences of ξ and the concentration susceptibility, respectively. According to

Luettmer-Strathamann [21], asymptotically close to the critical point, the following power laws

hold:

Ds =
kBT
6πηξ

∼ ξ−1−φ = ε(1+φ)ν ' ε0.67,

Db =
αb

ρ

(
∂c
∂µ

)−1

p,T
∼ ξ−γ/ν = εγ ' ε1.24, (10)

D = Ds + Db ∼ ε
0.67,

where the universal critical exponents φ, ν and γ have the values φ ' 0.063, ν ' 0.63 and γ ' 1.24,

and ε = (T−Tc)/Tc is the reduced temperature. The asymptotic analysis also points out the thermal
5



diffusion factor behaves like [21]

kT ∼ ξ
1+φ = ε−(1+φ)ν ' ε−0.67. (11)

Therefore, in this study, we assume D and kT obey the following equations:

D = D0ε
0.67, kT = kT 0ε

−0.67. (12)

In order to determine D0 and kT 0 in Eq. (12), we assume critical anomalies are not noticeable

when ε = 0.1. Furthermore, we assume D|ε=0.1 can be predicted by the model developed by Vaz

et al. [31], and kT |ε=0.05 = 0.05 (a negligible value [23] since the mixture is dilute). Consequently,

D0 and kT0 are determined.

2.3. Initial and boundary conditions

Initially, the fluid is in thermodynamic equilibrium with ε = 0.003 and ρ = ρc. The right

boundary is adiabatic (q = 0) and impermeable (i = 0), leading to Tx|x=L = cx|x=L = u|x=L = 0. For

left boundary, we assume no heat conduction (namely Tx|x=0 = 0) and two kinds of concentration

perturbations are considered

c|x=0 = 0.00505 and − cx|x=0 = 500 m−1, (13)

namely imposing a concentration step and a constant concentration gradient, respectively. The

velocity at left boundary is

u|x=0 =
1

ρ(1 − c)
i. (14)

We list in Table 1 the physical properties used in calculations, which are treated as constant

since concentration perturbations are small.

2.4. Numerical method

To study the PE on acoustic time scale ta = L/va = 40.5 µs (va =
√

cp/cv × (∂p/∂ρ)T,c = 247.13

m/s is the sound speed, where cv is the specific heat at constant volume), equations (2)-(7) with

initial and boundary conditions were solved by SIMPLE algorithm after finite volume discretization

implemented based on OpenFOAM [32], an open source C++ library for computational fluid
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Table 1: The thermodynamic and transport properties of the mixture of 0.005 C2H6 and 0.995 CO2 at ε = 0.003.

ε Tc ρc cv cp × 10−4 αT × 106 βp

- K kg m−3 J kg−1 K−1 J kg−1 K−1 Pa−1 K−1

0.003 303.73 464.89 871.05 3.95 1.60 0.31

κc cs × 108 H × 106 η × 105 λ D × 109 kT

- J−1 kg J kg−1 Pa · s W m−1 K−1 m2 s−1 −

17.56 6.12 2.26 3.29 0.18 3.50 0.524

dynamics. Convective terms are discretized using a TVD (total variation diminishing) scheme with

OpenFOAM’s limitedLinear limiter. Transient terms are discretized with a first-order Euler

scheme. The mesh, including 1080 points, was refined near the boundaries so as to accurately

represent thin BLs. A time step ∆t = 0.01 µs was chosen to assure proper numerical convergence

of the solutions.

2.5. Validation of the numerical code

In 2006, Miura et al. [12] observed the acoustic waves experimentally using an ultra-sensitive

interferometer. Continuous heating of 1.83 kW/m2 is applied during 0.2 ms to a cell filled with

near-critical CO2. They measured density changes on a timescale of 1 µs.

To validate our code, a simulation has been conducted in a 1D configuration and with the same

initial and boundary conditions as in the experiments. The comparisons are presented in Fig. 2,

where generally fair agreements are noticed, with overestimation in the late stage of propagation.

The overestimation can be interpreted as the neglect of the damping effects of the lateral walls.

3. Numerical results

The primary aim of this study is to exhibit the PE induced by mass transfer (or concentration).

However, the third term on the RHS of Eq. (6) indicates the PE is actually reinforced by the Dufour

heat flux. Thus we also performed calculations with kT = 0 to eliminate the DE, and comparisons

between two conditions are made to better explain the mechanism. Note that as indicated by

Eq. (6) when assuming a constant H, the interdiffusion between two species (i.e. Hi in Eq. (1))

actually has no influence on temperature field (absent in Eq. (6)).
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Figure 2: The normalized density change at the cell center versus time. The set-up of the numerical model mimics

the experiment of Miura et al. [12], serving as the validation of our numerical code.

First consider c|x=0 = 0.00505 and kT = 0 case, namely that a sudden concentration step of

0.00005 occurs at the left boundary and the expansion of the BL is solely caused by mass transfer.

Figure 3 presents the velocity and temperature profiles at initial acoustic times (solid lines). Near

the left wall, owing to the vanishing D and the diverging κc, a thin BL expands, manifested by a

steep positive velocity gradient (see the inset in Fig. 3(a)), provoking an acoustic wave traveling

in the fluid. In this process, the internal energy of the BL is transformed into the kinetic energy

of the wave. As shown in Fig. 3(a), the wave consists of two parts: a steep head in which the

velocity gradient is negative (corresponding to a compression region) and a gentle tail in which

the velocity gradient is positive (corresponding to an expansion region). Consequently, the p, ρ and

T at a fixed point in the bulk fluid first experience a sudden increase and then decrease gradually in

each acoustic time. Since p, ρ and T have the same behavior, only temperature profiles at different

time are presented in Fig. 3(b), whose shape is identical to that of velocity. The reflection of the

acoustic wave happens when it reaches the boundaries. As the wave propagates, its kinetic energy

is transformed into internal energy in the bulk fluid, making p, ρ and T in the bulk fluid increase.

Such an acoustic heating is clearly shown in Fig. 4, which plots the temperature profiles at longer

acoustic times.

When kT , 0 (kT > 0 in current case), a heat flux proportional to diffusion flux (given by

kT/cs·i) on account of the DE is applied at the left boundary. A mixed BL then forms along left wall
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Figure 3: (a) Velocity and (b) temperature profiles at initial acoustic times for c|x=0 = 0.00505 case. Ti is the initial

temperature. The inset in the upper-right corner of (a) is the enlarged left boundary region. The numbers denote the

ratio t/ta, with ta = 40.5 µs, and arrows indicate the direction of the wave propagation. The emission and reflection of

acoustic waves are clearly seen.
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0.5

4.5
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Figure 4: Temperature profiles at different acoustic times for c|x=0 = 0.00505 case. The numbers denote the ratio t/ta

and the arrow indicates the direction of the wave propagation. The acoustic heating is clearly seen.

with both concentration and temperature gradients. However, the right edge of the BL is actually

defined by temperature profile since the thermal diffusivity DT = λ/(ρcp) = 9.94 × 10−8m2/s is

larger than D (the influence of SE on mass diffusion is negligible by comparison). The expansion

of the BL is thus reinforced. It is observed that a stronger acoustic wave, with a similar form,

propagates in the fluid (see dash-dotted lines in Fig. 3). Such a mixed PE transfers more energy

out of the BL, making the p, ρ, T in the bulk fluid grow even faster (see Fig. 4).

In general, wave form is closely related to mechanical disturbance, which is imposed by the

BL (the piston). The mass flux i dominates the behavior of the BL by controlling the concentration

and temperature variations in it (Dufour heat flux is proportional to i). The sudden increase of c

at left boundary induces a large i (also a large Dufour heat flux) in a very short time, leading to

a sudden expansion of the BL. Then the mass flux decreases gradually due to the establishment

of BL, resulting in a deceleration in expansion. In other words, the BL is equivalent to a piston,

which first moves rightward suddenly (causing a strong compression head in the wave) and then

decelerates gradually (causing a gentle expansion tail).

Now consider −cx|x=0 = 500 m−1 case, in which the mass flux and Dufour heat flux imposed

at the left boundary are nearly constant. According to previous reasoning, one can expect a steep

compression wave traveling in the fluid due to the BL expands at an almost constant speed. Pre-

sented in Fig. 5 is the velocity and temperature profiles at different acoustic times. The expanding
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Figure 5: (a) Velocity and (b) temperature profiles at different acoustic times for −cx|x=0 = 500 m−1 case (see Fig. 3

caption.)
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BL is shown in the inset of Fig. 5(a), where the velocity gradient is positive. In agreement with

above prediction, it is observed that an abrupt compression wave (corresponding to a negative ve-

locity gradient) propagates in the fluid, which reflects back at the right boundary (see Fig. 5(a)).

The acoustic heating is clearly shown in Fig. 5(b), the compression wave makes a traveling in-

crease in the bulk temperature. When kT , 0, the reinforced PE is evidenced by the stronger

compression wave and acoustic heating.

4. Theory

4.1. Expressions for amplitudes

We give a thermodynamic theory to explain the phenomenon for constant concentration gra-

dient case, obtaining the expressions of amplitudes of velocity, density, pressure, temperature,

denoted as u′, ρ′, p′, T ′, respectively [1, 12]. Imagining the BL as a moving piston with a constant

speed, u′ should equal the piston’s velocity, namely the volume expansion rate per unit area of the

BL. According to the linearized equation of state (see Eq. (7)), expansion of the boundary layer is

the result of concentration increase and temperature increase (due to Dufour heat flux). Thus the

expression of u′ should be a superposition of the two above-mentioned factors.

From a thermodynamic point of view, the relaxation of concentration field c is dominated by

diffusion. Further ignoring the Soret effect, the governing equation, along with the initial and

boundary conditions, is

dc
dt

= D
d2c
dx2 ,

t = 0, c = c0, (15)

x = 0,−cx = g0.

Because the diffusion coefficient D is quite small near the critical point, the domain length L = 10

mm is much larger compared to the boundary layer thickness lBL on acoustic time, leading to the

following solution [33]

c(x, t) − c0 = 2g0

√
Dt
π

exp
(
−

x2

4Dt

)
− g0xerfc

(
x

2
√

Dt

)
. (16)
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At the edge of concentration boundary layer x = lBL, the following equation holds

c(0, t) − c(x = lBL, t)
c(0, t) − c0

= 0.99. (17)

Using Eq. (16) and defining ω = x/(2
√

Dt), Eq. (17) is transformed to

exp(−ω2) −
√
πωerfc(ω) = 0.01, (18)

whose numerical solution is ω ≈ 1.606. Thus we obtain

lBL ≈ 3.211
√

Dt. (19)

The volume change of the boundary layer per unit area due to concentration increase is given by

δVc(t) =

∫ lBL

0
κc [c(x, t) − c0]dx. (20)

Inserting Eq. (16) and Eq. (19) into Eq. (20), and using w to replace x, we obtain

δVc(t) = 4Dκcg0t
∫ 1.606

0

[
1
√
π

exp(−ω2) − ωerfc(ω)
]
dω. (21)

The approximate value of the integral in Eq. (21) is 0.249. Therefore, δV(t) is approximated by

δVc(t) ≈ Dκcg0t. (22)

The velocity amplitude due to concentration increase is

u′c =
dδVc(t)

dt
= Dκcg0. (23)

As for temperature increase induced expansion, we follow Onuki’s approach [1]. The Dufour

heat flux at left boundary is given by

qD =
ρkT D

cs
g0. (24)

Assuming expansion of the boundary layer is an isobaric process [1], the volume change of the

boundary layer per unit area due to temperature increase is given by

δVT (t) =
qD

ρlBLcp
βplBLt =

kT Dβpg0

cscp
t. (25)

13



The velocity amplitude due to temperature increase is

u′T =
dδVT (t)

dt
=

kT Dβpg0

cscp
. (26)

Finally, we obtain the expression for velocity amplitude of the acoustic wave

u′ = u′c + u′T ,

= Dκcg0 +
kT Dβpg0

cscp
, (27)

= −Dκccx|x=0 −
kT Dβpcx|x=0

cscp
.

The superposition is justified since their separate contributions in the expansion of the BL. Note

that for the sake of simplicity, the SE is ignored in Eq. (27), which results in a slight undervalua-

tion.

The mass conservation gives ρ′ (ignore small quantity of the second order)

ρ′ =
ρ

va
u′. (28)

The isentropic nature of the acoustic wave gives the expressions for p′ and T ′

p′ =

(
∂p
∂ρ

)
s
ρ′ = ρvau′, (29)

T ′ =

(
∂T
∂p

)
s
p′ =

βpTva

cp
u′. (30)

4.2. Energy and temperature efficiencies

The energy efficiency ζE of PE is defined as the ratio of energy transferred into bulk fluid

Ebulk(t) and energy sent into the fluid Ein(t), where

Ebulk(t) =

∫
bulk

pδρ/ρdx = pu′t,

Ein(t) = ρD
(
kT/cs + H

)
cxt,

namely

ζE =
Ebulk(t)
Ein(t)

=
p

ρ
(
kT/cs + H

) (
kTβp

cscp
+ κc

)
. (31)
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Table 2: Amplitudes of the acoustic wave for −cx|x=0 = 500 m−1 case obtained from numerical results (columns

denoted as Simulation) and calculated from theoretical expressions Eqs. (27)-(32) (columns denoted as Theory).

kT = 0 kT , 0

unit Simulation Theory Simulation Theory

u′ µm/s 32.43 30.70 148.88 147.25

ρ′ g/m3 0.0607 0.0578 0.278 0.277

p′ Pa 3.73 3.53 17.08 16.92

T ′ mK 0.0190 0.0180 0.0870 0.0861

ζE - ∼ 0.1331 0.1264 ∼0.1262 0.1261

ζT - ∼ 0.9838 0.9814 ∼0.9775 0.9787

The temperature efficiency ζT of PE is the ratio of actual temperature increase ∆T (t) = T (t)− Ti =

T ′t/ta (T is the average temperature) and the ideal temperature increase ∆Tideal(t) = Ein(t)/(ρLcv),

leading to

ζT =
∆T (t)

∆Tideal(t)
=

βpT

ραT

(
kT/cs + H

) (
kTβp

cscp
+ κc

)
. (32)

We compare theoretical values and those obtained from numerical results in Table 2. Above rela-

tions are validated by the good agreements between numerical and theoretical values. ζE and ζT in

current problem are almost the same with those of thermal PE, whose ζE = p/T · (∂T/∂p)s,c [12]

is equal to 0.1260 and ζT is very close to 1. The discrepancy between ζE and ζT can be explained

by the fact that the internal energy of a near-critical fluid mainly depends on density [11], but the

PE makes little contribution to the relaxation of density field.

To further understand the coupling between the PEs induced by concentration and temperature,

we decompose Eq. (31) as follows:

ζE =
kT/cs

kT/cs + H
ζET +

H

kT/cs + H
ζEc, (33)
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where

ζET =
p
T

(
∂T
∂p

)
s,c
, (34)

ζEc =

[
ρµ

pκc
+

T
p

(
∂p
∂T

)
s,c

]−1

, (35)

where ζET is the energy efficiency of the PE solely driven by the Dufour heat flux, and ζEc is the

energy efficiency of the PE solely driven by concentration variations. The coefficients in Eq. (33)

represent the ratios of their respective driving energy to total energy. The decomposition of ζE

implies that in the perspective of energy transformation, the mixed PE is a direct superposition of

their respective effects. In fact, this conclusion is based on the approximation that properties of

the fluid mixture are constant. Actually, the governing equations suggest that concentration and

temperature are coupled nonlinearly through the SE and the DE, which influence properties of the

fluid by changing the distributions of concentration and temperature fields, and further the total

amount of energy entering the fluid. In this study, these variations in properties are neglected since

the perturbations applied at the left boundary are small. Besides, Eq. (35) indicates that ζEc is

greater than ζET when µ/κc < 0. Even though the difference between ζEc (equals 0.1264) and ζET

(equals 0.1260) is imperceptible for C2H6 − CO2 mixture, the above conclusion implies a potential

in improving the energy efficiency by carefully choosing the mixture.

5. Conclusions

The numerical results and theory presented in this paper clearly exhibit the PE, a rapid energy

transport mechanism, can be induced by mass transfer in a confined NCBFM. In current problem,

the diffusion of one species, together with the Dufour heat flux, makes the BL expand and drives

an acoustic wave propagating in the fluid, making the temperature, pressure and density increase

over several acoustic times. By this means, energy is transferred from the BL to bulk fluid with

an efficiency ζE of about 0.126. For the sake of clarity, we call the PE induced by mass transfer

(or concentration) as solutal piston effect (SPE). It should be kept in mind that SPE is always

coupled with thermal PE owing to the DE. The resulting mixed PE can be approximated as a

direct superposition of their respective effects in the perspective of energy transformation.
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This paper extends the concept of the PE and gives new insights into fluid behavior in the

critical region. In the future, the SPE for different fluid systems is worth investigating, in which

the signs of κc and kT may be different and the BL would expand or contract according to the

specific conditions. Moreover, it is also necessary to explore the interplay between the SPE with

natural convection.
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